Final Project: Robot Pick and Place System

Team 17: Matthew Gomes, Omri Green, and Grace Holden | March 2, 2022

Abstract— In this lab, we implemented a robotic pick-and-
place system using techniques developed in previous labs, as
well as an object detection algorithm based on color masking.
Our system was designed to be dynamic, responding seamlessly
to environmental changes such as the removal or addition of
objects of interest, and as such the program architecture was
designed to be efficient and non-blocking, offloading
computationally expensive image processing to a separate CPU
core from our main state machines. Qur image detection and
kinematic calculations integrated relatively seamlessly,
allowing us to create a robust and organized system which
accomplishes the desired goals accurately and consistently.

I. INTRODUCTION

For the robotic pick and place system we combine and
build from what we have learned in previous labs to make a
sorting system with our three degree of freedom robotic arm.
We incorporate computer vision to identify objects, localize
them, move the robotic arm, grab the objects, and sort them.
We utilize our knowledge functions from previous labs to
control the motion of our arm, while introducing a focus on
new topics in computer vision to identify, classify, and sort
objects on the board based on color and shape. We work
through these tasks using a color masking approach to
segment and localize objects of varying colors and shapes.

II. BACKGROUND

In this project we will combine what we have
learned in the previous labs. In the first lab we learned about
the system architecture of the Hephaestus robot arm and
wrote MATLAB code to send commands to the joints of the
robot. Beside sending commands to the arm, we also
monitored the position in joint space.

Building off of these principles, in the second lab
we calculated the forward kinematics of the arm in order to
determine the position and orientation of the end effector.
We also worked on visualizing the arm and its position in
MATLAB using stick diagrams which could be verified by
manually moving the arm.

The third lab involved calculating the inverse
kinematics of 3-degrees of freedom arm and implementing
those calculations in MATLAB. We created a trajectory
generator function and considered trajectory planning in
joint-space, as well as in task-space. This functionality
allows us to transition more smoothly from one point to
another.

Eventually, in the fourth lab we worked with
differential, or velocity, kinematics. We did this by
calculating the Jacobian matrix and therefore the forward
velocity kinematics of the robot. We wrote a program in
MATLAB to implement these calculations for the robot. We

also implemented a numerical approach to solving an
inverse kinematics problem. Finally, we performed
trajectory following using speed and direction commands,
followed by visualization and characterization of the motion
trajectories of our arm. In the end we had implemented
velocity-based trajectory following, an iterative inverse
kinematics solution, and a live 3D CAD model of the arm.

III. MOTIVATION

This lab allows us to integrate the topics we have been
working on over the course of the term into a final
cohesive project. Incorporating all of these topics allows
us to solidify our understanding of robotic systems and
object recognition using the camera attached to the board.
Throughout the term we have worked on finding the best
way to move the arm to desired positions, tracking those
positions, and manipulating our trajectories to avoid errors
caused by singular configurations. In this final project we
put these individual components to use in a tangible way.
After this lab the arm will be able to recognize, classify,
move, and sort objects on the board. While this project is
implemented on the relatively small scale of the robot
checkerboard, the skills are relevant to much larger
applications beyond or within our future robotics
coursework. It is also useful to have these tangible
instances of the topics we are learning about in lecture as
they can only help us further our understanding of
robotics.

IV. METHODS

A. Camera Setup & Intrinsic Calibration

First, we found and set up the camera in MATLAB using
the camera support package. The camera is very sensitive to
lighting in general. Shadows and differences in lighting due
to natural light in the lab can make it difficult to calibrate the
camera to the board and recognize objects. In order to
mitigate the effects of inconsistent lighting, we used a bright
light overhead and positioned it slightly to the right side of
the board (from the camera’s perspective) which typically
displayed as poorly lit in our initial photos. For the intrinsic
calibration of the camera we used the camera calibration app
in MATLAB. We took numerous photos of the checkerboard
in order to get a calibration where the MATLAB was able to
see the points on the board and register the entire workspace.
We had to add a strip of painters tape along the back row of
the board by the base of the arm because we did not want that
portion of the board to be included in our calibration and in
our initial calibrations, it was being registered. We took about
80 images in order to get 20 that would work. Before we
could run the calibration, we made sure that our X and Y
axes were aligned consistently and correctly in all the photos.

To run the calibration, we had to select the camera model and
make sure the radio button indicating the camera model
“fisheye” was selected before pressing the “Calibrate” button.
Then we got rid of images that were not helpful or had an
error that was not acceptable. Once we were happy with the
calibration results, we saved them by clicking “Export
Camera Parameters” which allowed us to generate a script to
be readily available every time we come into the lab so that
we would not have to continue to recalibrate the camera
every time we worked on our project.

B. Camera-robot registration (Extrinsic Calibration)

We registered the camera between the reference frame of
the robot and the reference frame of the image (Pixel
Coordinate in the Image Plane). This relates the position of
objects within the field of view of the camera to robot task
space coordinates. The function getCameraPose() calculated
the transformation between the robot’s base frame and the
checkerboard’s frame. We obtained a position of interest in
x-y pixels in the image frame using the data tips tool. Then
we used the pointsToWorld() MATLAB function to
transform the image frame to a checkerboard frame. This is a
built-in function from MATLAB’s image processing toolbox
which takes in the intrinsic calibration parameters, the
extrinsic calibration parameters, and the (x,y) pixel
coordinates in the image and returns the corresponding x,y
location in mm with respect to the grid-attached frame on
the paper. We then found the transformation matrix from the
robot's base to the checkerboard’s frame. Finally, we
multiplied the transformation matrix by the pose in the
checkerboard to get the position of the target we identified in
pixel coordinates in the robot’s base frame coordinates. We
then validated the correctness of our camera-robot
calibration registration.

C. Object Detection and Classification

Our image processing pipeline was implemented using a
color masking approach in a MATLAB parallel pool. As our
cameras were not compatible with MATLAB parallel pools
(reading from them gave nothing but timeouts and hardware
inaccessible errors), we had to stream our camera’s input
through OBS’s virtual camera feature, and then access that
feed from MATLAB. Frame acquisition was implemented
differently from how it was in the provided sample code- we
discovered that starting the camera as a video feed and then
simply pulling frames from that feed as needed while
clearing the video buffer to prevent out-of-memory errors
gave the lowest-latency response. After frame acquisition,
we created four masked variants of the image using color
masks tuned to separate out red, green, yellow, and orange
objects into black/white images. We then ran our object
detection algorithm on each color variant independently.
This algorithm consisted of the following steps: (1) we
removed any included segments under a certain area to filter
out “noise” (small areas unintentionally included by the
mask) using bwareaopen(), (2) we label the remaining
regions using bwlabel() , (3) we retrieved the area,
perimeter, centroid, convex hull (smallest polygon that
contains a region) and the major and minor axes (axes of the
smallest ellipse which contains a region) of each remaining

region using regionprops(), and finally (3) we use the
gathered information to compute (a) the circularity of each
region (perimeter"2/(4*pi*area)), and (b) for each area of
adequate circularity we compute a corrected centroid by
finding the midpoint of the longest cross-section of the
convex hull. These remaining corrected centroids are
reported to the main state-machine thread as likely locations
for objects of the relevant color after being converted to the
task-space using pointsToWorld() with our camera
calibration, as well as a simple rotation and translation. We
experimented with using the major and minor axes to detect
overlaps between objects of the same color, but although the
calculation was functional, the end-effector of our robot was
not dexterous enough to accurately separate balls that close
together, so the functionality was disabled. The following is
a flowchart of our image processing pipeline:

raw image color
from camera masking
labeling & de-naoising
v

circularity-based
elimination

output to
data queus

D. Object Localization

In this step, we convert the centroid location of the balls
into usable target positions for the robot to pick up. We used
our previous work to determine the target centroid in the
image and then related that centroid to a point in the plane of
the checkerboard using . Next, we had to account for the fact
that the balls are not flat circles lying on the grid. Simply
using the centroid of a detected 2d circle will not account for
this in most orientations, so we provided the robot with an
offset for centroid locations to account for this effect.

E. Final Project Challenge

Here we use what we have developed in the previous

steps in order to implement a program that:

a.) determines the 2d position of an object with respect
to the robot’s reference frame

b.) Uses inverse kinematics from previous labs to
calculate the joint angles required for the robot’s end
effector to reach the object’s location.

c.) Uses trajectory planning to implement a smooth
motion from the robot’s current position to the
location of the object. (We moved to a position above
the object and then moved slowly down towards the
object to avoid hitting and displacing the orb.)

d.) Close the gripper. The function “closeGripper” was
already written and provided in the Robot class.

e.) Pick the object up, move it to an arbitrary position,
and drop it by opening the gripper. The function

“openGripper” was already written and provided in

the Robot class.
We integrated everything we have done in the labs to
configure the system to detect relevant objects in the
camera’s field of view. We worked to sort the objects based
on color, lift them with the arm, and distribute them to pre-
determined locations (pick-and-place). Our pick-and-place
system was designed to handle arbitrary amounts of every
color of object, and was also dynamic- that is, it could
account and correct for changes in object location during its
trajectory. We also demonstrated its ability to detect,
categorize, and grab an object other than the lab balls (a
marker cap, in our case), and implemented a dynamic URDF
render of our robot to visualize it in 3d space throughout its
tasks, shown below:

Our pick-and-place program was modeled as two nested
state machines, TASK and STATE. The TASK machine
cycled through three states: check, plot, and run, for each
task of checking for changes, plotting the URDF, and
running the robot, respectively. The STATE machine
controlled the current goal of robot movement in the pick-
and-place workflow. Simultaneously, a worker thread ran on
another CPU core to keep the TASK machine fed with up-
to-date centroid locations. Below is a diagram of the
program design:

|

- —
o IRSK state machine|

go_above ball (STATE state)

Devects and reports cencroids

Go above target ball

V. RESULTS

Our robot was able to accurately and consistently
complete all assigned tasks, dynamically tracking and
sorting arbitrary numbers of balls of all colors without issue.
Data gathered regarding the precision of several components
of our code are listed below:

Using forward kinematics to calculate the robot end-
effector position while moving repeatedly between the nest
and zero positions, we measured an average real-world tip
end position of (102.5, -3.8, 195.9) in the zero position,
compared to the optimal (100, 0, 195). We calculated a root-
mean-square error of 5.502mm.

Tip positions moving to home position .
L tip endpoint

1035
4 2 " 103

¥ (mm) 45 025 (mm)

Using inverse kinematics and quintic task-space trajectory
generation, we moved our robot between three locations in
the X,Y,Z plane to visualize the accuracy of our model. As
shown by graphs of the X,Y,Z position of the end-effector
over time throughout the motion,

i position vs time

X pasition
¥ position
150 Z position

100 |

position{mm)

-100 |

-150

0 2000 4000 G000 8000 10000 12000 14000 16000

time(ms)

Velocity, acceleration, and joint position over the same,

axis velocities
| sl i 2 P T e] ¥ velocity
| " TN | Z vetochty |

velocity(mmis)

T04 06 08 1 12 14 16 18 2
time(ms) =10
position vs time
[X position |
Y position |
Z position |

positian{dagrees)
o

o T

08 08 1 12 14 16 18 2
tme{ms) <10t
10% axis acceleration

2
=2

acceleration(mm/s®)
L o

12 14 16 18 2
time(ms) 10*

c‘
b
.
=
e
®

And the 3D end-effector position throughout the
trajectory,

End effector position

~ 100

~ 80

100) o 60
e 20

Y (mm) -150 o X (mm)

Our inverse kinematics solution is accurate, and our
quintic task-space trajectory generation and trajectory
following are accurate enough to complete the final
project.

We did not use velocity kinematics in our final project,
but the same trajectory as shown before is showm below,
this time followed by a velocity trajectory moving in the
direction of the target points:

End effector position

50 . = L
400 = 40
" 20

¥ (mm) 480 g X (mm)

As well as the axis velocities, X,Y,Z position, and axis
acceleration for the same:

=

axis velocities

| X velovity
e) ¥ velocity

i Y 1Y/ et Z velociy

Wiiendh) ;

2000 4000 €000 8000 10000 12000

tims{ms)
position vs time

veosity(mm/s)

&
oo

X position
¥ position
2 pasition

position(degrees)
|
|

8000 8000 10000 12000
time(ms)
axis acceleration

8|
g
g

3

X acceleration
Y acceleration
Z acceberation

acceleration(mmis?)
b s N

2000 4000 8000 8000 10000 12000
time{ms)

We implemented a singularity detection algorithm based
on the determinant of the top half of the jacobian, which
came in handy to prevent such configurations in our pick-
and-place system. Below is an example graph of the
determinant det(Jp) as the robot approaches a singular
configuration:

- determinant det(Jp)

daterminant

e B o B

000 1500 2000 2500 3000 3500 4000 4500 5000
time(ms)

These parts integrated together allowed us to create our
pick-and-place system which, when calibrated properly
for ambient lighting, accurately and consistently delivered
all balls to their target locations regardless of how many
of each color existed on the field, or where or when they
were moved or removed on or from the same field.

VI. DISCUSSION

Overall, our robot exceeded our expectations for accuracy
of detection and relocation. Initial issues with camera
calibration and centroid localization cause us some
concern, but we eventually realized that this was no fault
of our own- the camera we were working with in fact had
a physical flaw (possibly a deformed lens) which caused
excess distortion in certain parts of the image. Once we
switched to a better camera, our object localization
improved dramatically.

Our code was designed from the ground up to revolve
around asynchronous execution and parallel processing-
while that made some tasks significantly easier (elegant
dynamic object tracking was the main goal of this design),
lack of experience with MATLAB’s unique threading
implementation caused some implementation headaches.
Particularly, our camera refused to accept any
communication from MATLAB’s parallel pools, which
was difficult to diagnose at first as the threads would
simply die silently and report nothing. Once we
implemented an acceptable method of debugging in this
parallel environment (printing to files in try/catch blocks),
we were able to determine the source of the issue and
implement a workaround. In our case, this was simply to
stream our camera’s input through an OBS virtual camera,
and have MATLAB read from OBS instead of directly
from the hardware. While this technically increases
latency, it is on the order of a few milliseconds which was
perfectly acceptable for our use-case. Further
development would likely necessitate either a switch to
another type of camera, or a different program structure to
work around this issue.

The portions of our program focused on kinematics
worked flawlessly, with error well within our acceptable
bounds for this application. We believe much of said error
can be attributed to imperfections in the robot hardware
and firmware, so if further development required reducing
said error even further, more in-depth changes may be
required.

Object localization was less precise, partly due to its
nature as a complex problem, and partly due to

inconsistent laboratory lighting conditions. Proper
detection required recalibrating our color masks every lab
session to account for changes in ambient lighting. We
initially experienced issues with erroneously detecting
already sorted balls as valid targets- we solved this by
simply creating paper buckets for the arm to drop balls
into, which obscured them from the camera. Further
development in this area would primarily focus on
identifying optimal and replicable lighting scenarios, and
improving pre-processing to account for more widely-
varying lighting conditions. This is a notable area where
significant optimizations are possible- several joint angle
offsets and centroid offsets which are hard-coded in our
implementation would ideally be computed based on
parameters detected during motion, and centroid
localization could use significantly more advanced
algorithms to correct for variations in the quality of color
masking. It may even be found that color masking is not
an optimal approach for this task, or at least that a wider
variance of masks needs to be used, and the results
averaged, to improve confidence of object detection and
localization.

Quintic task-space trajectory planning was chosen as
our primary trajectory generation due to its greater
accuracy over cubic trajectories, and the fact that task-
space trajectories are easier to visualize while not causing
enough of a hit to performance for us to need to worry
about our system performance. This decision was aided by
our earlier design decisions, as offloading image
processing to a separate thread allowed us to allocate
more resources to trajectory generation without causing
performance problems.

Velocity kinematics, while interesting, were not utilized
in the final iteration of our robot. Velocity-based
trajectories proved to be less precise than either cubic or
quintic trajectories in the task or joint space without
providing any tangible benefits. The Jacobian, however,
proved useful in detecting and avoiding singular positions
which would cause our inverse kinematics to fail.

Further development of our understanding of kinematic
chains and robotic manipulations would be best served by
experimenting with arms that have more degrees of
freedom, as six degrees of freedom are required to reach
all positions and orientations within the workspace.
Working with a more dexterous end-effector would also
enable more precise and intricate operations within the
workspace.

VII. CONCLUSION

In this lab, we combined the skills we have been working
on for the duration of the term. We combined our use of
velocity kinematics to catch concerning inputs that involve
singularities, inverse kinematics and trajectories to move the
robot arm to positions based in joint space and task space,
forward kinematics in order to find the position and
orientation of the end effector, and the general system and

architecture of the Hephaestus arm. Now we have fully
implemented our pick and place system for the robotic arm.
The arm is now able to pick up colored orbs and sort them
into their respective buckets, one for each color, as well as
identify objects being added to or removed from the board
mid-sort. Our arm also allows for multiple of the same color
orbs at the same time and will reliably sort them into their
buckets. Our arm is also able to pick up random objects,
which we demonstrated using a green dry-erase marker cap
and placing it into the bucket for green orbs. Our robot can
also dynamically follow an orb around the board as we move
it. Overall, his project has been extremely useful in
developing our knowledge of kinematic chains and robotic
systems in general.

VIII. LINK TO CODE

https://github.com/RBE300X-
Lab/RBE3001 Matlabl7/releases/tag/lab5_submission

IX. LINK TO VIDEO

https://drive.google.com/file/d/1bury AWfrTO7wtXSdkQFn
7508 YFOWPFxr/view?usp=sharing

X. TABLE OF CONTRIBUTIONS

Name Planning | Code | Experim. | Analysis | writeup | video
Matthew | 33% 70% 40% 50% 40% 5%
Gomes

Omri 33% 20% 25% 25% 10% 90%
Green

Grace 33% 10% 35% 25% 50% 5%
Holden

XI. APPENDIX

XII. DERIVATION OF FORWARD AND INVERSE POSITION
KINEMATICS

Forward kinematics:

=

Inverse kinematics:

XIII. DERIVATION OF FORWARD AND INVERSE VELOCITY
KINEMATICS

Forward velocity kinematics (Jp):

syms 51 52 53

%Pre-defined matrices

Tel-[1L000; 0100 00155 0001];

Ti2 = [cos(sl) @ -sin(s1) @; sin(sl) @ cos(sl) @3 @ -1 042; @ @ 0 1];

T23 = [cos(s2-90) -s5in(s2-99) @ 1@9*cos(s2-98); sin(s2-58) cos(s2-99) @ 18@*sin(s2-98); e @ 1 9; @8 @ @ 1];
T34 = [cos(s3+90) -5in(53+490) B 100°CoS(53+98); 5in(53+98) cos(53498) @ 108*5in(52+490); @ 0 1 8; @ 0 © 1];

Te2 = Te1°T12
Te3 = TA2*T23
o4 = TE3T3A
%s1 derivations

s1Te4 = diff(Tod,s1);
%52 Derivations

s2184 = diff(T04,52);
%53 perivations

s3784 = diff(T04,s3);

Inverse velocity kinematics were calculated using the
pseudoinverse of the jacobian (inv(Jp)).

ACKNOWLEDGMENT

We would like to thank our professor and all of the 3001
SAs for dedicating their time to teaching us the skills and
techniques required to complete this project.

REFERENCES

[1] WPIRBE 3001 course notes

[2] WPIRBE 3001 SAs

[3] SolidWorks URDF tutorial:
https://www.youtube.com/watch?v=ge3P307TgJI

[4] Misc. MATLAB documentation and user forum posts

